Combined Science Curriculum (Biology Part) (Secondary 4-6)

Supplementary Document

Jointly prepared by the Curriculum Development Council and the Hong Kong Examinations and Assessment Authority

Recommended to be used with the Combined Science Curriculum and Assessment Guide (Secondary 4-6)

Science Education Section, Education Bureau

Introduction

The purpose of the revision is to provide space for enhancing the effectiveness of learning and teaching of the Biology Part of Combined Science. This document is the result of a number of discussion sessions of the following committees.

- Working Group on the Review of Biology (S4-6) and Combined Science (Biology part) (S4-6) Curricula
- CDC-HKEAA Committee on Biology (Senior Secondary)

It is applicable for the Combined Science (Biology Part) Hong Kong Diploma of Secondary Education (HKDSE) Examination in year 2016 and onwards. The explanatory notes in this document are by no means exhaustive nor intended to dictate the scope of learning and teaching at the classrooms. It is recommended to be used together with the *Combined Science Curriculum and Assessment Guide (Secondary 4-6)* jointly prepared by the Curriculum Development Council and the Hong Kong Examinations and Assessment Authority.

General Notes

In each topic, there is a table with the following parts:

(1) Students should learn

This part lists the intentions of learning in the content domain of the curriculum. It outlines the major content areas of each topic and also indicates the knowledge and concepts that students should learn. This provides a basic framework upon which the learning and teaching activities can be developed.

(2) Student should be able to

This part lists a range of learning outcomes to be achieved by students, with different levels of ability in the content domain of the curriculum. Whenever learning outcomes which draw on higher cognitive ability (e.g. evaluate, relate) are applicable, other learning outcomes drawing on lower cognitive ability (e.g. state, describe) are not listed. Students are expected to demonstrate the whole range of cognitive abilities and use these learning outcomes as the basis for self-evaluation. Teachers can also use these learning outcomes to set assessment tasks for monitoring the progress of learning.

(3) Suggested Learning and Teaching Activities

This part suggests activities that can be provided for students to enable them to achieve the learning outcomes. The list includes a wide range of activities, such as discussion, debate, practical work, investigations, information searching and projects. It should be seen as a guide for teachers rather than as an exhaustive or mandatory list. Teachers should exercise their professional judgment in selecting activities to meet the interests and abilities of their students. Where possible, the activities should be framed in the context of students' own experience, to enable them to make connections with scientific knowledge, society and the environment around them. Students will then be well equipped to apply scientific concepts, theories, processes, and values to situations in which they have to investigate and solve everyday problems.

(4) Curriculum Emphases

This part comprises Scientific Inquiry, Science–Technology–Society–Environment Connections, and the Nature and History of Biology. It outlines the generic skills, scientific process skills, values and attitudes that are highlighted in the topic. It also helps enhance students' understanding of the nature of scientific inquiry in biology, the interconnections between science, technology, society and the environment, and biology as a dynamic body of knowledge.

(5) Footnotes

This part is to clarify the learning and assessment focuses of certain curriculum contents.

I. Cells and Molecules of Life

Students should learn	Students should be able to	Suggested Learning and Teaching	Curriculum Emphases
		Activities	©Scientific Inquiry ©STSE Connections ③Nature and History of Biology
a. Molecules of life			① Ask relevant questions, identify
Water and inorganic ions (e.g. nitrogen, magnesium, calcium and iron)	• Relate the significance of water, inorganic ions and biomolecules to life	• Discuss whether life can exist without water, and the possible benefits of drinking mineral water or	problems and formulate hypotheses for investigations related to cells and molecules of life
Biomolecules ¹ : carbohydrates, lipids,		 Perform common biochemical tests 	 ① Use appropriate instruments and proper techniques for carrying out practical
proteins and nucleic acidsBuilding blocks		(e.g. Benedict's test, iodine test, grease spot test, and different types	work (e.g. food tests).② Be aware of the applications of
• Functions		of test papers) to identify the presence of biomolecules in living	biological knowledge of molecules of life in society.
		ussues.	technology in understanding the molecular basis of life.
b. Cellular organisation			② Recognise that the development of
Discovery of cells	• Appreciate the contribution of the technological development of the microscope to the discovery of cells.	 Read articles about the discovery of cells. Conduct a project to explore the contribution of the development of the microscope to the understanding 	microscopic technology, computing technology and image analysing technology may lead to the advancement of biological knowledge.
		of cells.	 Recognise the contributions of various people (e.g. Robert Hooke and Theodor Schwann) to developments in biology.

¹ The following contents are not the learning and assessment focus: optical isomers, linear form of sugar molecules, structural differences of starch, glycogen and cellulose.

Students should learn	Students should be able to	Suggested Learning and Teaching Activities	Curriculum Emphases ©Scientific Inquiry ©STSE Connections ®Nature and History of Biology
Cell membrane			 Plan and conduct scientific
Properties and functions	 Use the fluid mosaic model to explain the properties and functions of cell membrane. Appreciate the uses and limitations of scientific models. 	• Construct a model to represent the structure of cell membrane (e.g. using tank and ping-pong balls).	 investigations in the area of cellular structures and functions. Use appropriate instruments and proper techniques for carrying out practical work (e.g. preparation of temporary
 Sub-cellular structures and their functions Nucleus and chromosomes, endoplasmic reticulum, mitochondrion, chloroplast, cell wall and vacuole 	 Prepare temporary mounts of specimens for examination, and make observations and drawings under a light microscope. Identify cell organelles as seen under light and electron microscopes. Compare the cellular organisation of animal and plant cells. 	 Prepare temporary mounts of animal and plant tissues for examination under a light microscope. Discuss the variations of the number of mitochondria in different tissues and cell types. 	 1 Make careful observations and accurate records (e.g. examine prepared slides or temporary mounts of tissues and make biological drawings). 2 Be aware of the applications of biological knowledge of cells in society.
Prokaryotic cells (e.g. bacterial cells) and eukaryotic cells	 Compare the sub-cellular organisation of prokaryotic and eukaryotic cells. 	• Examine electron micrographs or live cell images of prokaryotic, eukaryotic cells and sub-cellular structures.	 ③ Be aware of the dynamic nature of biological knowledge (e.g. the understanding of cell membrane and sub-cellular organelles). ③ Be aware that biological knowledge and theories are developed through observations, hypotheses, experimentations and analyses (e.g. fluid mosaic model of cell membrane structure).

Students should learn	Students should be able to	Suggested Learning and Teaching Activities	Curriculum Emphases DScientific Inquiry ©STSE Connections ©Nature and History of Biology
 c. Movement of substances across membrane Diffusion, osmosis and active transport² Occurrence of phagocytosis in cells 	 Account for the movement of substances across membrane using the concepts of diffusion, osmosis and active transport. Apply the concept of osmosis to explain plasmolysis and haemolysis. 	 Perform practical work to study osmosis at cellular, tissue or organ levels. Examine live cell images of the processes involved in the movement of substances across membrane. 	 Make careful observations and accurate records (e.g. examine prepared slides or temporary mounts of tissues and make biological drawings). Identify and explain the importance of control variables in scientific investigations (e.g. the study of osmosis).
 d. Cell cycle and division Stages of cell cycle³ Cell growth, nuclear division and cytoplasmic division Nuclear division Mitosis Meiosis⁴ 	 Recognise the various stages of cell cycle. Understand the importance of cell division in growth and reproduction. Outline and compare the processes of mitosis and meiosis. 	• Observe and identify the different stages of mitosis and meiosis, using prepared slides, photomicrographs or live cell images.	 Make careful observations and accurate records (e.g. examine prepared slides and make biological drawings). Recognise that the development of microscopic technology and imaging technology may lead to the advancement of biological knowledge.

² Detailed mechanism of active transport is not the learning and assessment focus.
³ Details of cell cycle are not the learning and assessment focus.
⁴ Crossing over is a feature of meiosis.

Students should learn	Students should be able to	Suggested Learning and Teaching Activities	Curriculum Emphases ^① Scientific Inquiry ^② STSE Connections ^③ Nature and History of Biology
 e. Cellular energetics Metabolism: catabolism and anabolism Occurrence of catabolic and anabolic processes in cells 	• Distinguish between catabolic and anabolic processes.		
Enzymes and enzymatic reactionsProperties and roles of enzyme	• Recognise the properties of enzyme	• Perform practical work to	① Identify and explain the importance of
• Active site and specificity	 and its roles in metabolism. Explain enzyme specificity in terms of active site. 	 demonstrate the breaking down or building up action of enzymes. Design and perform investigations to 	control variables in scientific investigations (e.g. the study of enzymatic activities).
• Factors (temperature, pH and inhibitors) affecting the rate of enzymatic reactions ⁵	• Explain the effects of factors on the rate of enzymatic reactions.	study the effects of temperature, pH or inhibitors on the activities of enzymes, and to find out some	
• Application of enzyme in everyday life		commercial applications of enzymes (e.g. bioactive washing powder, meat tenderiser).	② Be aware of the applications of biological knowledge of enzymes in society.

⁵ Modes and mechanism of enzyme inhibition are not the learning and assessment focus.

Genetics and Evolution II.

Students should learn	Students should be able to	Suggested Learning and Teaching Activities	Curriculum Emphases ^① Scientific Inquiry ^② STSE Connections ^③ Nature and History of Biology
a. Basic genetics Mendel's laws of inheritance Inheritance in humans ¹	 Understand the law of segregation and law of independent assortment. Apply Mendel's laws of inheritance to solve genetic problems². Understand the inheritance of ABO 	 Read articles about how Gregor Mendel contributed to the study of genetics. Use computer simulations and other materials (e.g. genetic corn) to study patterns of inheritance. 	 Make careful observations and accurate records. Use diagrams and physical models as visual representations of phenomena and relationships arising from the data (e.g. genetic diagrams).
 Multiple alleles: ABO blood groups Sex linkage Sex determination 	 Recognise the role of sex chromosomes in sex determination of humans. 		 ② Be aware of the application of knowledge of basic genetics in society and its social, ethical and economic implications.
			 ③ Recognise the contributions of various people (e.g. Gregor Mendel) to the understanding of genetics and evolution. ③ Be aware that biological knowledge and theories are developed through observations, hypotheses, experimentations and analyses (e.g. Mendel's work).

 ¹ Codominance, incomplete dominance and linkage are not the learning and assessment focus.
 ² The learning and assessment focus is confined to solving genetic problems involving monohybrid cross.

Students should learn	Students should be able to	Suggested Learning and Teaching Activities	Curriculum Emphases ^① Scientific Inquiry ^② STSE Connections ^③ Nature and History of Biology
Pedigree analysis	• Analyse pedigree to study the inheritance of characteristics.	• Construct and/or analyse a pedigree of the inheritance of some human traits (e.g. haemophilia, tongue rolling and ear lobes).	 Classify, collate and display both first and second hand data (e.g. construct a pedigree of the inheritance of some human traits).
 Variations in characteristics Continuous variation Discontinuous variation Causes of variation hereditary information environmental factors mutation 	• Explain the causes of different types of variations in characteristics.	• Observe and analyse variations in humans (e.g. height and tongue rolling).	① Make careful observations and accurate records (e.g. observe variations in humans).
b. Molecular genetics Chromosomes, genes and nucleic acids	• Describe the structural and functional relationships of chromosomes, genes and nucleic acids.	 Construct models of DNA and RNA. Read about the work of some biologists (e.g. James Watson and Francis Crick) in the discovery of DNA. 	 Use diagrams and physical models as visual representations of phenomena and relationships arising from the data (e.g. DNA model). Be aware of the application of knowledge of molecular genetics in society and its social, ethical and economic implications.

Students should learn	Students should be able to	Suggested Learning and Teaching	Curriculum Emphases
		Activities	①Scientific Inquiry ②STSE Connections③Nature and History of Biology
			③ Be aware of the dynamic nature of
			biological knowledge (e.g. from basic
			genetics to molecular genetics).
			③ Recognise the contributions of various
			people (e.g. James Watson, and Francis
			Crick) to the understanding of genetics.
Biotechnology			
• Recombinant DNA technology ³	• Recognise the applications of	• Use audiovisual materials to	① Use appropriate instruments and proper
• DNA fingerprinting ⁴	recombinant DNA technology and	illustrate the processes of	techniques for carrying out practical
	DNA fingerprinting.	recombinant DNA technology and	work on molecular genetics (e.g. DNA
• Human Genome Project (HGP) and	• Recognise the contributions and	DNA fingerprinting.	extraction and gel-electrophoresis).
its implications	limitations of the data obtained from	• Perform practical work to extract	
	the HGP.	DNA from living tissues (e.g. onion	² Be aware that societal needs have led to
	• Appreciate the joint efforts of	tissues), and to separate DNA	technological advances (e.g.
	scientists in international genomics	fragments by gel-electrophoresis.	recombinant DNA technology and DNA
	projects.	• Search for information on the use of	fingerprinting).
		DNA fingerprinting in forensic	 Appreciate the contribution of the
		science.	Human Genome Project (HGP) and the
		• Make a chart or create a timeline of	application of biotechnology to humans
		the discoveries that have arisen from	and society.
		the HGP.	² Explain how the knowledge of
			biotechnology may lead to the

 ³ Detailed mechanism of recombinant DNA technology is not the learning and assessment focus. Recombinant DNA technology involves restriction and ligation.
 ⁴ Detailed mechanism of DNA fingerprinting is not the learning and assessment focus.

Students should learn	Students should be able to	Suggested Learning and Teaching	Curriculum Emphases
		Activities	③Nature and History of Biology
			development of new technologies and
			how new technologies may lead to
			further understanding of inheritance.
			(3) Appreciate the advancement of the
			study of genetics from traditional
			broading experiments to molecular
			experimentation and englycic
			experimentation and analysis.
c. Biodiversity and evolution			
Diversity of life forms	• Appreciate the existence of various	• Visit a herbarium, country park or	① Make careful observations and accurate
	life forms in the world, and the	special area (e.g. Lions Nature	records (e.g. observe distinguishing
	different ways through which	Education Centre, and Tai Po Kau	features for identifying organisms).
	organisms adapt to their habitats.	Nature Reserve).	
		• Use specimens, audiovisual	② Appreciate the role of science and
Classification of organisms	• Be aware that modern classification	materials, games, etc. to study the	technology in understanding the
• Need for classification	is based on the phylogenetic	diversity of organisms, and their	complexity of life forms and their
	relationships of organisms.	ways of life.	genetics.
	• Recognise the use of classification	 Classify organisms into major 	
	systems and binomial nomenclature.	categories according to a	
	 Construct and use dichotomous keys 	classification system	
	to identify unknown organisms	clussification system.	
	to recently unknown organishis.		

Students should learn	Students should be able to	Suggested Learning and Teaching Activities	Curriculum Emphases ^① Scientific Inquiry ^② STSE Connections ^③ Nature and History of Biology
 Classification approaches proposed by Carl Woese Six kingdoms (Eubacteria, Archaebacteria, Protista, Fungi, Plantae and Animalia) Three domains (Bacteria, Archaea and Eukarya) 	 Classify organisms into six kingdoms. Appreciate that classification systems are subject to change when new evidence appears. 	 Search for information on other classification systems, and binomial naming of some organisms. Construct and use dichotomous keys to identify organisms from a local habitat. Read about the work of Carl Linnaeus and his system of naming organisms. Discuss the advantages and limitations of different classification systems, and why the classification of some organisms has been changed over time. 	③ Be aware of the dynamic nature of biological knowledge (e.g. the development of classification systems).
Origins of life	• Appreciate that there are various explanations for the origins of life.	• Read about the different explanations for the origins of life, and the work of some biologists (e.g. Jean Baptiste Lamarck, Charles Darwin and Sir Alfred Russel Wallace) on evolution.	 Formulate and revise scientific explanations and models using logic and evidence (e.g. use of fossil records as evidence for evolution). Understand how science has been influenced by societies (e.g. various views on the origins of life and evolution).

Students should learn	Students should be able to	Suggested Learning and Teaching Activities	Curriculum Emphases ^① Scientific Inquiry ^② STSE Connections ^③ Nature and History of Biology
 Evolution Origin of species Evidence of evolution (e.g. fossil record) 	 Be aware of the limitations of using fossil record as evidence of evolution, and the presence of other evidence 	Activities	 3Nature and History of Biology 3 Recognise the contributions of various people (e.g. Charles Darwin, Sir Alfred Russel Wallace and Jean Baptiste Lamarck) to the understanding of evolution.
	evidence.		

III. Organisms and Environment

Students should learn	Students should be able to	Suggested Learning and Teaching	Curriculum Emphases
		Activities	①Scientific Inquiry ②STSE Connections③Nature and History of Biology
a. Essential life processes in plants			① Make careful observations and accurate
Nutrition in plants			records (e.g. examine prepared slides or
• Plants as autotrophs	• Appreciate the significance of plants		temporary mounts of roots, stems and
	as autotrophs.		leaves, and make biological drawings).
• Photosynthesis [*]			① Ask relevant questions, identify
			problems and formulate hypotheses for
• Need for minerals ¹	• Explain the need for minerals in	• Design and perform investigations to	investigations related to life processes.
	plants.	study the effects of different minerals	① Plan, conduct and write reports on
		on plant growth using potted plants.	scientific investigations in areas of life
			processes.
• Absorption of water and minerals	• Relate the structure of roots to their	• Examine the structure of the root of	① Identify and explain the importance of
	functions in water absorption.	young seedlings using live	control variables in scientific
		specimens or prepared slides.	investigations (e.g. the study of the
Gas exchange in plants			effects of different minerals on plant
• Occurrence of gas exchange in	• Relate the features of leaves to gas	• Design and perform investigations to	growth).
different parts of plant	exchange and prevention of water	study the effects of light intensity on	① Use appropriate instruments and proper
• Gas exchange in leaves	loss.	gas exchange in land or water plants	techniques for carrying out practical
	• Explain the effects of light intensity	using hydrogencarbonate indicator	work (e.g. preparation of temporary
	on gas exchange in plants.	solution or data loggers.	mounts and microscopic examinations).
		• Design and perform investigation to	
		compare the distribution of stomata	② Analyse ways in which scientific and

^{*} Refer to *Photosynthesis* in topic I Cells and Molecules of Life. ¹ Using nitrogen, phosphorus and magnesium as examples.

Students should learn	Students should be able to	Suggested Learning and Teaching	Curriculum Emphases
		Activities	OScientific Inquiry @STSE Connections③Nature and History of Biology
		on both sides of a leaf.	technological advancement (e.g.
Transpiration			computing technology and image
• Process ² and significance	• Make connections between	• Perform practical work to	analysing technology) have enhanced
	transpiration, absorption and	demonstrate the occurrence of	our understanding of complex life
	transport of water, and cooling of	transpiration, and to trace the uptake	processes.
	plants.	of water in herbaceous plant using	
		eosin solution.	③ Understand that science is a human
			endeavour through the study of essential
• Factors (humidity, light intensity	• Explain the effects of environmental	• Design and perform investigations to	life processes of plants and interactions
and wind) affecting the rate of	factors on the rate of transpiration.	study the effects of environmental	with our environment.
transpiration		factors on the rate of transpiration	③ Be aware that biological knowledge and
		using potometer.	theories are developed through
			observations, hypotheses,
Transport of substances in plants		• Examine the cross sections of the	experimentations and analyses (e.g. the
• Transport of water ³ and minerals	• Describe the path of materials	leaf, stem and root of a young	study of transpiration pull).
• Translocation of organic nutrients ⁴	transport in flowering plants.	dicotyledonous plant using	③ Recognise the complexity of the
		temporary mounts or prepared slides.	physiological processes of plants.
Support in plants			③ Understand the nature and limitations of
• Cell turgidity	• Compare the means of support in		scientific activity (e.g. investigations on
• Physical nature of xylem	herbaceous and woody		various physiological processes).
	dicotyledonous plants.		

 ² The explanation of transpiration pull should be linked with the sub-topic *Movement of substances across membrane*. Cohesion-tension theory is not the learning and assessment focus.
 ³ Cohesion-tension theory is not the learning and assessment focus.
 ⁴ Mass flow hypothesis of phloem transport is not the learning and assessment focus.

St	udents should learn	Students should be able to	Sug	ggested Learning and Teaching	Cu	rriculum Emphases
			Ac	tivities	0Sc 3N	cientific Inquiry @STSE Connections ature and History of Biology
b.	Essential life processes in animals				1	Ask relevant questions, identify
Nı	atrition in humans					problems and formulate hypotheses for
•	Humans as heterotrophs					investigations related to life processes.
•	Food requirements and functions of	• Explain the effect of age, activity	•	Perform practical work to identify	1	Plan, conduct and write reports on
	different food substances	and pregnancy on dietary		composition in some common		scientific investigations in areas of life
	– Carbohydrates	requirements.		foodstuffs.		processes.
	– Lipids		•	Design and perform investigation to	1	Identify and explain the importance of
	– Proteins			compare the amount of vitamin C in		control variables in scientific
	– Vitamins			different fruits and vegetables.		investigations (e.g. the study of the
	- Minerals (e.g. calcium and iron)					action of digestive enzymes).
	 Dietary fibre 				1	Use appropriate instruments and proper
•	Balanced diet	• Relate health problems to improper				techniques for carrying out practical
•	Ingestion	diet.				work (e.g. food tests and dissection).
	– Dentition					
	– Mastication				2	Evaluate the impact of the application of
•	Digestion	• Explain the significance of	•	Examine the alimentary canal and its		biology to human activities (e.g. dietary
	– General plan of the digestive	mechanical and chemical digestion.		associated glands of a dissected		requirement).
	system			mammal or a human torso.	2	Be aware of the application of
	- Digestion of carbohydrates,	• Understand the digestion and	•	Perform practical work to		biological knowledge (e.g. balanced
	proteins and lipids in various	absorption processes in various parts		demonstrate the effect of bile salt on		diet) in society.
	parts of the alimentary canal	of the alimentary canal.		oil.		
•	Absorption and assimilation	• Illustrate the adaptive features of the	•	Design and perform investigations to	3	Understand that science is a human
	– Structural adaptation of small	small intestine for food absorption.		study the action of digestive		endeavour through the study of essential
	intestine for food absorption	• Describe the routes of the transport		enzymes (e.g. amylase on starch-agar		life processes of animals and
	 Role of liver 	of absorbed food and their fates in		plate, protease on milk-agar plate or		interactions with our environment.
	 Fate of absorbed food 	cells and tissues.		egg white).	3	Recognise the complexity of the
						physiological processes of animals.

Stu	dents should learn	Students should be able to	Sug Act	ggested Learning and Teaching tivities	Cui OSc 3Na	rriculum Emphases cientific Inquiry @STSE Connections ature and History of Biology
• Ga	Egestion		•	Perform practical work to simulate digestion and absorption in the alimentary canal using dialysis tubing.	3	Understand the nature and limitations of scientific activity (e.g. investigations on various physiological processes).
•	General plan of the breathing system	• Relate the structure of various parts of the breathing system to gas exchange.	•	Examine the breathing system of a dissected mammal or a human torso. Examine a pig's lungs.	1	Make careful observations and accurate records (e.g. examine prepared slides and make biological drawings). Use appropriate instruments and proper
•	Gas exchange in air sacs Routes of transport of respiratory gases Mechanism of ventilation	• Understand the exchange of respiratory gases between the body cells and the external environment.	•	Examine the structure of air sacs, using prepared slide or photomicrograph. Perform practical work to compare the differences in composition between inhaled and exhaled air.		techniques for carrying out practical work (e.g. microscopic examinations and dissections).
Tra •	nsport of substances in humans General plan of the circulatory	• Relate the structure of various	•	Perform dissection of a pig's heart	1	Make careful observations and accurate
•	system and lymphatic system Composition and functions of blood, tissue fluid and lymph	components of the circulatory system and lymphatic system to transport.	•	and examine its structures. Examine the capillary flow in a fish's tail fin or frog's web.	1	records (e.g. examine prepared slides and make biological drawings). Use appropriate instruments and proper
•	Exchange of materials between blood and body cells Formation of tissue fluid	• Describe the exchange of materials and the formation of tissue fluid.	•	Examine the structure of arteries and veins, and the components of blood using prepared slides or photomicrographs.		techniques for carrying out practical work (e.g. microscopic examinations and dissections).

Students should learn	Students should be able to	Suggested Learning and Teaching	Curriculum Emphases
		Activities	
c. Reproduction, growth and			
development			
Reproduction in humans			① Make careful observations and accurate
• General plan of the male and	• Relate the structure of various parts	• Examine the male and female	records (e.g. examine photomicrographs
female reproductive systems	of the reproductive systems to their	reproductive systems of dissected	and make biological drawings).
	functions.	mammals or a human torso.	
• Structure of sperm and ovum	• Recognise the roles of sperm and	• Examine photomicrographs, video	② Evaluate the impact of the application of
	ovum in sexual reproduction.	clips or live cell images of sperms	biology to human activities (e.g. birth
• Menstrual cycle ⁵		and ova.	control).
- Cyclic changes in uterine lining			② Analyse ways in which scientific and
– Ovulation			technological advancement (e.g.
			computing technology and image
• Fertilisation	• Describe the transfer of semen	• Use audiovisual materials to study	analysing technology) have enhanced
	during sexual intercourse and the	the process of fertilisation.	our understanding of complex life
	process of fertilisation.		processes.
• Development of embryo and foetus	• Relate the structure of the placenta to	• Examine photos or video clips taken	Be aware of the application of
– Placenta	its role in the development of foetus.	by ultrasound showing different	biological knowledge (e.g. birth control)
 Identical twins and fraternal 		stages of foetal development.	in society and its social, ethical,
twins		• Discuss the harmful effects of	economic and environmental
		drinking and smoking habits of a	implications.
Birth process		pregnant woman on the development	
	• Recognise the significance of	of the foetus.	
Parental care	parental care and the advantages of		
	breast-feeding.		

⁵ Hormonal control of menstrual cycle is not the learning and assessment focus.

Students should learn	Students should be able to	Suggested Learning and Teaching Activities	Curriculum Emphases ^① Scientific Inquiry ^② STSE Connections ^③ Nature and History of Biology
• Birth control	• Understand the biological basis of various methods of birth control.	• Search for information on the effectiveness and possible side effects of various birth control methods, <i>in vitro</i> fertilisation and termination of pregnancy.	
d. Coordination and response			
 Stimuli, receptors and responses Light as stimulus: the human eye Major parts of the eye Rod cells and cone cells Colour vision Eye accommodation Eye defects (long sight, short sight and colour blindness) 	 Understand the roles of sense organs and receptors in detecting changes in the environment. Relate the structure of major parts of the eye to vision. Explain the causes of eye defects. Describe how long sight and short sight are corrected with glasses. Be aware of the surgical methods for eyesight correction. 	 Examine model of the human eye. Perform dissection of an ox's eye and examine its structures. Search for information on how modern technology helps in rectifying eye defects (e.g. short/long sight, astigmatism, cataract or glaucoma). 	 Use appropriate instruments and proper techniques for carrying out practical work (e.g. dissections). Ask relevant questions, identify problems and formulate hypotheses for investigations related to life processes. Plan, conduct and write reports on scientific investigations in areas of life processes. Identify and explain the importance of control variables in scientific investigations.
 Light as stimulus: phototropic response in plants Responses of root and shoot Role of auxins 	 Recognise the significance of phototropism. Understand the mechanism of phototropic responses in root and shoot. 	• Design and perform investigations on the phototropic responses of roots and shoots.	 Be aware that biological knowledge and theories are developed through observations, hypotheses, experimentations and analyses (e.g. the study of tropism).

St	udents should learn	Stu	dents should be able to	Sug	ggested Learning and Teaching	Cui	rriculum Emphases
				Act	tivities	①Sc ③Na	ientific Inquiry ©STSE Connections ature and History of Biology
•	Sound as stimulus: the human ear ⁶	•	Relate the structure of major parts of	•	Examine model of the human ear.		
	 Major parts of the ear 		the ear to hearing.				
Ne	ervous coordination in humans						
•	General plan of the nervous system					2	Analyse ways in which scientific and
•	Central nervous system	•	Recognise the role of the central	•	Examine model of the human brain.		technological advancement (e.g.
	- Functions of main parts of the		nervous system.				computing technology and image
	brain: cerebrum, cerebellum and						analysing technology) have enhanced our
	medulla oblongata						understanding of complex life processes.
	 Functions of spinal cord 						
	- Neurone: sensory neurone,	•	Distinguish different types of			3	Recognise the complexity of the
	interneurone and motor neurone		neurones in terms of structure and				physiological processes in humans.
			function.			3	Understand the nature and limitations of
	– Synapse ⁷	•	Describe the transmission of nerve				scientific activity (e.g. investigations on
			impulses across a synapse.				various physiological processes).
•	Reflex arc and reflex action	•	Compare the nature of reflexes and	•	Perform practical work of a reflex		
•	Voluntary actions		voluntary actions with examples.		action (e.g. knee jerk reflex).		
Ho	ormonal coordination in humans					3	Recognise the complexity of the
•	Nature of hormonal coordination	•	Understand the nature of hormonal				physiological processes in humans.
•	General plan of the endocrine		coordination.				
	system	•	Use an example to illustrate hormone				
			mediated response.				
		•	Compare hormonal and nervous				
			coordination.				

 ⁶ Mechanism of hearing is not the learning and assessment focus.
 ⁷ Specific names of neurotransmitters are not the learning and assessment focus.

Students should learn	Students should be able to	Suggested Learning and Teaching Activities	Curriculum Emphases OScientific Inquiry OSTSE Connections
a Homoostasia			③Nature and History of Biology
 Concept of homeostasis Importance of homeostasis Feedback mechanism⁸ Parameters of the internal environment Glucose level and gas content in blood, water content and body temperature 	• Appreciate that the internal environment of the human body is maintained by the nervous system and the endocrine system.	• Construct a flow chart to illustrate the feedback mechanism.	③ Recognise the complexity of the physiological processes in humans.
 Regulation of blood glucose level Roles of liver, pancreas, insulin and glucagon 	• Explain the principle of feedback mechanism with reference to the regulation of blood glucose level.	• Search for information about the physiological consequences of hormonal imbalance (e.g. insulin) and the remedies, especially through modern advances in science and technology.	
f. Ecosystems			
 Levels of organisation Species, population, community, ecosystem, biome and biosphere 	• Be aware that organisms and their environment are studied at different levels of organisation.		 Recognise the complexity of the environment.
 Major ecosystem types Freshwater stream, rocky shore, mangrove, grassland and woodland 	• Appreciate the existence of a variety of ecosystems in the local environment.	• Visit nature reserves, country parks, marine parks, field study centres and other local habitats.	

⁸ The learning and assessment focus is confined to negative feedback mechanism.

Students should learn	Students should be able to	Suggested Learning and Teaching	Curriculum Emphases
	Activities		OScientific Inquiry OSTSE ConnectionsONature and History of Biology
Components of an ecosystem	• Identify the abiotic factors of a		
Abiotic factors	habitat and explain their effects.		③ Understand that science is a human
Biotic community			endeavour through the study of essential
 Niche and habitat 			life processes of animals and
 Species diversity and dominant 			interactions with our environment.
species			
 Relationships between 	• Describe the different types of	• Use live or audiovisual materials to	
organisms	relationships between organisms in a	show the relationships of organisms	
 Predation, competition, 	habitat.	in an ecosystem.	
commensalism, mutualism			
and parasitism			
 Ecological succession 	• Outline the process of ecological		
 Primary and secondary 	succession.		
succession			
 Climax community 			
Functioning of an ecosystem	•		
• Energy flow	Use food chains, food webs,	• Construct and interpret food chains,	① Use diagrams, graphs, flow charts and
 Source of energy 	pyramids of numbers and biomass to	food webs, and pyramids of numbers	physical models as visual
 Energy flow between different 	represent the feeding relationships of	and biomass.	representations of phenomena and
trophic levels	organisms and energy flow between		relationships arising from the data (e.g.
	different trophic levels.		use food chains, food webs, and

Students should learn	Students should be able to	Suggested Learning and Teaching Activities	Curriculum Emphases ^① Scientific Inquiry ^② STSE Connections ^③ Nature and History of Biology
 Feeding relationships of organisms 	• Understand the efficiency of energy transfer in an ecosystem.		pyramid of numbers to represent relationships between organisms in ecosystems and distribution of
 Materials cycling Carbon cycle Roles of producers, consumers and decomposers in energy flow and materials cycling 	 Understand the cycling of materials in an ecosystem. Be aware of the interactions between the biotic community and the abiotic factors of an ecosystem. 		organisms).
 Conservation of ecosystem Impacts of human activities 	Recognise the need for conservation.		 ② Evaluate the impact of the application of biology to human activities (e.g. pollution control). ② Develop sensitivity and responsibility in striking a balance between the needs of humans and a sustainable environment. ② Be aware of the application of biological knowledge (e.g. sewage treatment) in society and its social, ethical, economic and environmental implications

Students should learn	Students should be able to	Suggested Learning and Teaching Activities	Curriculum Emphases ^① Scientific Inquiry ^② STSE Connections ^③ Nature and History of Biology
Study of a local habitat	• Conduct and report an ecological	• Conduct an ecological study of a	① Ask relevant questions, identify
• Distribution and abundance of	study of a local habitat.	local habitat (e.g. freshwater stream	problems and formulate hypotheses for
organisms		and rocky shore).	investigations related to ecosystems.
 Sampling methods 			① Plan, conduct and write reports on
 Quadrats 			scientific investigations of ecosystems.
 Line and belt transects 			① Select and design appropriate methods
			of investigations for specific purposes
• Measurement of abiotic factors			(e.g. use transects and quadrats to
(e.g. light intensity, pH, wind,			collect samples in field studies).
temperature, oxygen, humidity and			① Explain why sample size, random
salinity)			sampling, replicates and repeat
			procedures are important in scientific
			investigations (e.g. field studies).
			① Use appropriate instruments and proper
			techniques for carrying out practical
			work (e.g. field study techniques).
			③ Be aware that biological knowledge and
			theories are developed through
			observations, hypotheses,
			experimentations and analyses (e.g.
			field ecology).
			③ Understand the nature and limitations of
			scientific activity (e.g. investigations on
			ecosystems).

IV. Health and Diseases

Students should learn	Students should be able to	Suggested Learning and Teaching Activities	Curriculum Emphases ^① Scientific Inquiry ^② STSE Connections ^③ Nature and History of Biology
a. Personal health Meaning of health	• Recognise the meaning of health.		 Be aware of the application of biological knowledge in maintaining a healthy community and its social, ethical, economic and environmental implications.
 b. Diseases Types of diseases Infectious diseases Non-infectious diseases Infectious diseases (e.g. Cholera, dengue fever, hepatitis B, influenza and tuberculosis) Causes Ways of transmission Water, air, droplets, food, body 	 Understand the concept of disease. Distinguish between infectious and non-infectious diseases. Understand how infectious diseases are transmitted. 	• Conduct a project on infectious diseases (e.g. Cholera, dengue fever, hepatitis B, influenza and tuberculosis) with reference to their ways of transmission and symptoms.	 Make careful observations and accurate records (e.g. examine prepared slides or photomicrographs of pathogens and make biological drawings). Identify questions and carry out appropriate studies to understand various infectious diseases in our society. Classify, collate and display both first and second hand data (e.g. collect information related to health and
fluids, vector and direct contact		• Examine photomicrographs, prepared slides or live cell images of some pathogens (e.g. viruses, bacteria, fungi and protists).	 diseases from the Hospital Authority, Department of Health or the Internet). ② Be aware of the application of biological knowledge in maintaining a healthy community and its social,

Students should learn	Students should be able to	Suggested Learning and Teaching Activities	Curriculum Emphases ^① Scientific Inquiry ^② STSE Connections ^③ Nature and History of Biology
		 Search for information on the major outbreaks of infectious diseases in Hong Kong. 	 ethical, economic and environmental implications. ② Analyse ways in which societal needs have led to technological advances.
			 ③ Be aware of the dynamic nature of biological knowledge related to diseases, and understand that science is a human endeavour. ③ Understand the nature and limitations of scientific activity (e.g. the causes and transmission of some diseases are not yet known).